microroughness of i-th mating surface; q, contact pressure on mating surface due to simultaneous action of
external compression and gas pressure; q,, contact pressure due to external compression; ¢, factor dependent
on construction characteristics of joint and Poisson coefficient; p;,, excess gas pressure in internal joint
cavity; E;, modulus of elasticity of gasket material; A, specified compression of gasket in the joint; Rg,
larger radius of groove in which gasket is installed; R; and Ry, outer and inner radii of gasket before instal-
lation in joint; L, width of gasket; Sy, mean distance between adjacent microroughness peaks of mating sur-
faces; n, coefficient dependent on ratio 1/Sy, (tabulated in[97);x, coordinate measured from inner face of gas-
ket along microgap axis; p, current gas pressure in microgap; x,, microgap section in which gas pressure p
reaches its mean value py,.
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FLOW AND HEAT- AND MASS-TRANSFER IN A
THIN FILM ON A FLUTED SURFACE

Yu. A, Buevich and S. V. Kudymov UDC 532.62:532.592

A study is made of steady flows and heat- or mass-transfer in a thin liquid film flowing over a
sloping fluted surface in a direction perpendicular to its generatrix.

Most theoretical studies of hydrodynamics and transfer processes in thin liquid films investigate films
on flat substrates (see the survey in [1, 21, for example.), In practice, various types of fluted surfaces and
surfaces with ragging, threads, or another type of artificial roughness are often used to intensify heat- and
mass-transfer. Examples of theoretical analysis of films on such surfaces may be found in [3-7].

Works on this subject, including [3-7], usually contain a significant number of inaccuracies and invalid
assumptions, The main purpose of the present work is therefore to explain, in a detailed and rigorous manner,
a small-parameter method which can be successfully used to solve problems of this type. This is done using
the example of steady two-dimensional flow of a film over a fluted substrate with a horizontal generatrix,

Formulation of the Problem

Let the middle plane of the fluted surface form an angle o with the vertical. We will introduce Cartesian
coordinate axes £ and 7, oriented, respectively, in the direction of the projection g onto this plane coincident
with the direction of motion, and normal to the plane. We will describe the surface using the periodic function

A. M. Gor'kii Ural Polytechnic Institute. Translated from Inzhenerno- Fizicheskii Zhurnal, Vol.42, No.4,
pp. 564-573, April, 1982, Original article submitted April 6, 1981,
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Fig. 1. Sketch and statement of problem. The form of
the solid surface is defined by the function n,(£) =
0.5xsin (£/A). The film profile is accurate to within
e! and &€ (the solid and dashed curves, respectively),
=0 and We = 3.
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Fig. 2, Relative increase in mean film thickness with
appearance of waves on the solid surface, F (x) =
sinx, £ = 0.5,

1= ny(§) with a zero mean. The free surface of the film corresponds to n = n,(£) = n,(§) + A (&) (Fig. 1.

We shall assume that the ratio of the amplitude of the function n,(§) to its period is of the same order as the
small quantity &.

The components of velocity v and pressure p satisfy the system of Navier—Stokes equations. On 3 solid
substrate

9, =0, =0, 1=, (§). (1)

On the free surface we have the usual kinematic conditions (equivalent to the condition of vanishing of the nor-
mal component of velocity)

vedn/dE = v, =, (§). . (2)
The conditions of vanishing of the tangential component and equality of the normal component of the stress vec-
tor to the surface pressure p = Th on the free surface are written in the form:

(T — Tgp) SN P cos B+ 7y, (cos? B —sin®P) = 0, Ty sin®P + 7, cos?p— 2, sinPcosp

o P dng V17 0 e (3)
=G d§2[1+(d§” , Pp=arctg d{i,’

We introduce the dimensionless variables:

_ & ,__n eFn
X = rak Y

eF(x):Tﬁ—(g—)
HA o R

(4)

_ % yp qy_ fRe _A®
Ve= =y BT ==l H = =

where ha is the characteristic dimensional thickness of the film; u is its characteristic velocity, The equa-
tions for V and P are written in the form

dF dpP daP hzRe
RelV,.=¢ —h AV cos a,
RelVe=e= 0 5 o T AV T cosa
oP ~ h2Re (@)
RRelV,=— ——+ AV, — sin e,
dy r
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o (Vy~e aF Vx> - n Vs
oy dx 0x
while the boundary conditions are written in the form

H

dH ’

Va=Vy=0, y=0; V, :-—j Vs dy, y = H,

dx 0x

4]
(Tyy—Te) E+ T4y (1—E?) =0, y=H; (6)

‘hReWe dE/dx
Fr (1 -+ Ey'/?

TunB? -+ Ty — 9T E = ,y=H.

Here, we introduced the functional notation

Txx=—“P+2<h Wy . dF oV, , Ty =—P+2 av, ’
ox . 0x Oy ‘ dy (7)
oV, v dF dv dF dH
Toy = +h—L—¢ L, E= h
== oy ox dx oy T
the operators
2 2 2 T\ 2 2 2
A= 13 —sh<2 dF 17 +dF 3} 1oe dF 15 e 13; :
oy? dx 0x0y dxt 9y dx oy? ox?
v ' (8)
LV, d _( ‘s oV, dy 0
ox Ox dy
0
and the dimensionless Reynolds, Froude, and Weber criteria
2
Re = hu , Fr= - , We——2 9)
v hg Mpg

The well-known film approximation in [8] corresponds to h < 1, Vy ~ VXmax{a, h}, which we assume to
be satisfied. We also assume that h’Re = hRe, < 1, where Re, is the Reynolds number usually introduced for
a film, and that We < 1. However, Fr < 1 is possible in the general case, so that h®Re/Fr ~ 1, eh Re We/Fr ~
g/h.

Use of perturbation theory in regard to the parameters &, h, and h®Re leads, as is easily shown, to a
system of regular, correctly stated boundary-value problems. For our purposes, it suffices to take

o =

Viz 2 &V, V= DV, P = i Py, H=1+ i“ ¢"H,, (10)
n=0 n=1

n=0 n=1

and limit our investigation to the terms of this series with n = 0, 1, 2, The gelection of unity as the zero ap-
proximation of H fixes the value of the dimensionless parameter h, which is undetermined.

Film Flow

Leaving only the zero-order terms in &, h, and h%*Re in (5)~(8), we arrive at the problem

VY BRe 0P _  FRe .
o0y? Fr T 0y Fr &7
b0
Via):O’ y:(), ‘Salgx d!/=0, (11)
X
0
vy ehReWe d2F
=0, Pp= ———— — y= 1.
oy P he Fr dxz
Its solution has the form
2
V,‘Cr))_ﬁl:r&cosa(l—%) v, (12)
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h2Re

2
Po=— sina (1— g)— —ReWe &F (12)
r

Fr dx?
Calculating the total volume flow rate of the liquid in the film q from (12) and determining u = q/h2, we

obtain
1/3 1/3
h:i(_i_ vq ) ,u:(io_sﬁ i) g2/8, (13)
A \cosa g 3 v
so that, in particular, we have the following for the dimensionless parameters
1/3 1/3,2/3 2/3 4/3
Re — cos o Ag 4q Fr — cos & q ’
3 e 3 Agtivie
(14)
2
h2 Re _ 3 ’ eh Re We _ 3 £ we
Fr cosa Fr cosa h
Using these relations, we rewrite (12) in the form
) 3 & d2F
V“”:s(l._i)y,z):stm— 3t we BF
x 9 o ga(l—y) — e (15)

In the next approximation of &, we obtain the following problem (use relations (14) and (15)) from (5)~

(8)

oy dF 0P
—_ LI

h 0Py VY P
oy dx oy e dx ' dypr ~ oy ’

Vv gF  gvl®
= g VTV =0=0,

(16)
[
yor @ fav,i” ay, V& Oy
dx 0x dy dy?
0
vy B oP, 3We d?H, B
Pi=2 dy =~ Oy b ow g 4=
The solution of problem (16) has the form
3 dF
(1):_3H 9 2 ,V(I)ZS__ 1__!/_) ,
x 1( 5 y) Y, Vy ix 2 Y
3We d2H, df
P,=3H tga — 3 I —u),
1 i tg i + o (1—y (17)
W 3
Hiz—l—(tga dF _ We &F \
3 dx coso  dxd
We have the following problem for the coefficients in (10) with n = 2; 7
Ve [V(o) vy j‘ ovih )dvﬁ:” dF 9P, h 0P dF \’ey® h PF gy
0y Y Tex ox dy |~ dx "oy T T\ ) dy? R dy
PVP _oP® | LwdVy) oV P gy kv
oy oy * o9x ' 9dy  dx. 9y e oOx '
VP =V =0, y=0; y=h2Rel,
1
dH. 3 Y
(0) :_ (Dpry x _
Vx dx - Ox (Vx Hi) j Ox dy! y= lv (18)
~ 5
vy a2V vy hoovy?
oy~ dp T Topr M e Tox
oV 0P, oP, ey oV dF
b=t =y e g Bk 2 2
Y dF 3Wel 3 e &F [ dF \* &,
dyt dx ' U cosa | 2 A dx? dx dx> |-
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The solution of this problem is represented in the form

3 2
VP = — 3H, (2~ ?y)y—i—QH?(l—y)y—i- L 2 (%—y> ¥ —
: g

dx?
L dH 12 27 , 3 . 9 . 3
dx (35y" sty 2oy+4oy6)’
vy gy 4 (o 3 3_’1__‘”11_(1_1) 2
Y Ydx \ 2yy+adx\ 5 )Y
dF nodH [ 1 3
=3 23 3 —tl—+(2— = — (19)
P, Hy T ( y) + > [2+( 3 y)y] |
d*F 2 1 3 3 ) 3We [ 3 & d2F { dF \?2 @2H,7. -
—3 _“ ] — 2= ) 3 | - C . 2
vdxz[ 5+( 4y+20y)y]+cosa[2h dxz(dx) dxz}+3H2tgoc,
2 2
H2:2H?+3( dF >,+i_h—(_3_ d2F dH, g — We &H(\ 6 dH,
3 dx 3 e 2 dx? dx cose  dx? 35 dx

The following terms of expansions (10) are easily constructed in similar fashion. The case of completely
ignoring inertial effects corresponds to y = 0; the situations h/e << 1and h/e > 1 correspond to a film of a
thickness much less than the amplitude of the surface roughness. If X is the period of the function F (x), then
the mean thickness of the film may be determined as:

X
<H>=§H

0

dx

cosa

— 1+ %2[1—]——:13—(tga+ We )2] (20)

with the latter equality pertaining to films on substrates with sinusoidal irregularities (F(x) = sin x). It should
be noted that (H ) is independent of y and h/e for such films,

Figure 1 shows a film profile on a vertical substrate with sinusoidal irregularities. The profile is accu-
rate to within e, Figure 2 shows the dependence of (H ) on o and We for films on such a substrate.

Heat- and Mass-Transfer in the Film

The equation of convective diffusion or heat conduction in the variables (4) is written in the form
h2Pe Le = A,c, Pe= Au/D, (21)

where the operators L and A, are defined in (8). Here, we are examining only limiting cases of small and
large Peclet numbers. The first case is typical of heat transfer through a film accompanied, for example, by
condensation or vaporization on its free surface. The second case is typical of mass transfer accompanying
dissolution of the substrate, absorption of a gas film from the environment, vaporization of a dissolved impur-
ity diffusing toward the free surface, etc. The boundary conditions imposed in solving (21) turn out to be differ-
ent in these two cases, ‘

Transfer When h? Pe « ¢, Here, (21) can be solved using the previous method, representing ¢ in the form
of a series of type (10). We choose boundary conditions in the form

c=0, y=0; c=c, = const, y = H(x). (22)

Proceeding as before, we obtain a solution to the problem (21), (22), accurate to within the terms of the
order &2, in the form

c eh d%F
—— =1 —eH,+ (H{ — H)ly —

Cx 2 dx2 (1—=av. (23)

With the same accuracy, the local flow to the substrate (calculated per unit area of its middle plane 1 =
0) has the form:

(24)

, D dF \27/2 D '
I:W[H—?F( = )} (0ye),—y = =22 [1—8H1+82(H?—H2)—

We are interested in the ratio of the value of (24) averaged over x (or &) to the value j =" at &€ = 0. We
obtain

eh d2F
2 dx?
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Fig. 3. Reduction in effective flow of heat ormass through a film at
small Peclet numbers, caused by waviness of the solid surface,
F(x) =sinx, ¢ = 0.5,

Fig. 4. Effect of waves on the solid surface on effective relative
flows to this surface (solid curves) and to the free surface of the
film (dashed curves), F (x) = sin x, ¢ = 0.5, h?pe > 1.

<]> We \?
=1— 3 t 25
*= j‘ X 18[ +<ga+cosa>] @)

(the latter equality pertains to the case F(x) = sin x). As should be expected, the waviness of the substrate,
causing an increase in the mean thickness of the flowing film (at a fixed liquid flow rate) leads to a decrease in
the effective conductivity of the film, The dependenceof ® on « and We is shown in Fig. 3; the maximum is at~
tained at o = — aresin We or o = — arcsin (1/We). The results obtained above are easily generalized to the case
h’Ppe ~ &.

Transfer to the Substrate When h®Pe > 1, This case is also quite possible when h’Re S ¢, since the
Schmidt number — and sometimes the Prandtl number — for ligquids may be very large. Using the method of thin
diffusion boundary layer, we assign boundary conditions in the form

c="c,=const, x=0; c=0, y=0; c>c,, y—oo0 (26)

and take the following within the layer (see (15), (17), and (19))

V. = 3Gy, 0—1—28H1+82(3H1—2H2——4—'\7 dH’). (27)
35 dx
Introducing the variables
v = G, t = ( 1+2( 1V 6Gdx (28)
2 h2 Pe
0

and, for simplicity, limiting ourselves to the case h <« 1, we obtain the following problem from (21) and (26)

dc 0 —  Oc¢ -
- 3 C=0Cgy t=0; ¢=0, $=0; , ’ 29
o % (1/119 P ) % ¥ C—>Cyy Yoo (29)
the solution of which has the form [8]
3 1/2
¢ o087 jvexp —A s dz, 2= (30)
Co 9 /s

Calculating the local flow per unit area of the middle plane of the substrate on the basis of (30) yields

- e G [l () o) "
0

2
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At x »> 1, we have the following for the mean flow to a substrate with sinusoidal irregularities

o <D =1——82—{-21—+(tga+ We )2]
cosa

j 271 2 (32)
2 1/3
P = 0.79 I Pe) Dec, )
x h

Equation (32) is graphed in Fig. 4; the curves have maximums at the same values of « as do the corre-
sponding relations (25), Surface waviness in this case leads to a reduction in the effective flow, dueto the fact
that an increase in mean film thickness is accompanied by a slowing of the rate of velocity increase near the
substrate with increasing distance from the latter. '

Transfer to the Free Surface When h?Pe > 1. In this case, it is expedient to introduce y' = hH(x) —y
and transform Eq. (21) to new coordinates x and y', keeping the boundary conditions in these coordinates in
the form (26). Here, generally speaking, the operators L and A, in (21) change their sign. To simplify mat-
ters, we will examine only the case h «< 1; in ignoring terms of the order h, we ensure that these operators —
thus Eq. (21) itself —~ remain the same as before.

The following, accurate to within the terms of order €2, is obtained from the above relations inside a thin

diffusion layer with h « 1 close to the free surface

3 2 y_ _dH |- 33
Ve=—M, M=1 2 lHy 4+ ——— —— - (33)
2 T [ s T
Introducing the variables
3 3 dF \?
Y= — My, t= 14 e Mdx, (34)
V=g thpeHJrs(dx)]
n
we arrive at the result for the problem
oc 0% )
ot - all,z s €= Cy, t:O’ 0=0, ‘p:(); C—>Cy» 1|)—>—00, (35)
the solution of which has the form
¢ b
=1.13 exp(—23dz, 2= ——. 36
o [om=a VT (36)

0
Following from this is the below expression for the flow to the free surface of the film, calculated per
unit area of the middle plane of the substrate:

x

. V? 179 Dc; dF \? —1/2 ,

113 Y3 e o oy 2 : 3

j S P (§[1+e ( = ) ] de) (37)
0

For the average flow for a film on a substrate with sinusoidal irregularities, we obtain

v%:'<{‘> —1a &? [_9+(tga+-we' )]

j° 36 cos o

(38)

000 (1280 e

X hA

Equation {38) is also graphed in Fig. 4. At small We, substrate waviness increases effective flow to the
free surface of the film., The same is decreased at large We. The value of # from (38) is minimal at the same
values of angle of inclination ¢ at which % from (25) and (32) is maximal. '

It should be emphasized in conclusion that our findings regarding the effect of substrate waviness on
transfer processes pertain only to laminar — not wavy — flow of a free thin film in a direction normal to the
generatrix of the substrate (i.e., "'across the waviness''). If waves appear, in the presence of hydrodynamic
interaction with an external flow, or with a change in the direction of motion, the findings may altered qualita-
tively as well as quantitatively, The new problems arising in this instance can, in principle, be examined by
the method of regular small-parameter perturbations developed above.



NOTATION

¢, concentration or temperature; D, diffusion coefficient or diffusivity; E, parameter in (7); F, periodic
function characterizing the form of the solid surface; G, function introduced in (27); g, acceleration due to
gravity; H, h, dimensionless thicknesses of film; j, local flow; L, operator in (8); M, function introduced in
(33); P, p, dimensionless and dimensional pressure; g, volume flow rate of liquid in film; T, dimensionless
stress tensor; t, variable in (28) or (34); u, mean velocity of liquid; V, v, dimensionless and dimensional
velocity of liquid; X, period of F (x); X, y, y', dimensionless coordinates; z, variable in (30) or (36); o, angle
between solid surface and vertical; 8 = are tg(dn,/df); y = h2Re/& A, film thickness; A, operator in (8); &,
dimensionless amplitude of waves on the solid surface; M, ratioofflows in film on wavy surface to flows in
film on flat surface; £, n, coordinates; A, linear scale of waves on the solid surface; v, kinematic viscosity;
o, surface tension; p, density of liquid; 7, stress tensor; ¥, stream function; Re, Pe, Fr, and We, Reynolds,
Peclet, Froude, and Weber numbers, respectively; the angled brackets denote averages.
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